

केंद्रीय भूमि जल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

विभाग, जल शक्ति मंत्रालय

भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES SARAIPALI BLOCK, MAHASAMUND DISTRICT, CHHATTISGARH

उत्तर मध्य छत्तीसगढ़ क्षेत्र, रायपुर North Central Chhattisgarh Region, Raipur

स्वच्छ जल स्वच्छ भारत

उत्तर मध्य छत्तीसगढ़ क्षेत्र द्वितीय तल, एल.के. कॉर्पोरेट एवंलॉजिस्टिकपार्क, धमतरीरोड, डूमरतराई, रायपुर (छत्तीसगढ़)–492015 फोन–0771–2974405, फैक्स–2974405 ईमेल–rdnccr-cgwb@nic.in

AQUIFER MAPS AND MANAGEMENT PLANS SARAIPALI BLOCK, MAHASAMUND DISTRICT

1. Salient Information:

<u>About the area</u>: Saraipali Block is situated in the easternmost part of Mahasamund district of Chhattisgarh and is bounded on the north by Raigarhdistrict, in the west by Basna block of Chhattisgarh, in the east and in the south by Odisha state. The area lies between 21.10 and 21.48 N latitudes and 82.88 and 83.28 E longitudes. The geographical extension of the study area is 870 sq.km, representing around 17 % of the district's geographical area. Administrative map of the block is shown in Fig. 1. Geomorphology comprises of pediment and pediplains in the central and south-western part, denudational hills and slopes in the northern and eastern part. Geomorphology map shown in Figure 2. Suranginala flowingeastwards is a tributary of Ong riverand Lath nala, Kholtinala flowing northwards is a tributary of Mahanadi river. Drainage map shown in Fig.3.

<u>Population</u>: The total population of Saraipali block as per 2011 Census is194997out of which rural population is 174954while the urban population is 20043. The population break up i.e. male- female, rural & urban is given below -

Bloc	ck	Total population	Male	Female	Rural population	Urban population
Saraij	pali	194997	97189	97808	174954	20043

Table- 1: Population Break Up

Source: CG Census, 2011

Growth rate: The decadal growth rate of the block is 25.76 as per 2011 census.

<u>Rainfall</u>: The study area receives rainfall mainly from south-west monsoon. The months of July and August are the heaviest rainfall months and nearly 95% of the annual rainfall is received during June to September months. Average annual rainfall in the study area is (Average of the last five years i.e. 2010 to 2015)1380.92 mm with 50 to 60 rainy days.

Year2010-112011-122012-132013-142014-15Annual rainfall1176.801378.701407.40971.201970.50	~						
Year 2010-11 2011-12 2012-13 2013-14 2014-15		Annual rainfall	1176.80	1378.70	1407.40	971.20	1970.50
		Year	2010-11	2011-12	2012-13	2013-14	2014-15

Table-2: Rainfall data in Saraipali block in mm

Source: IMD

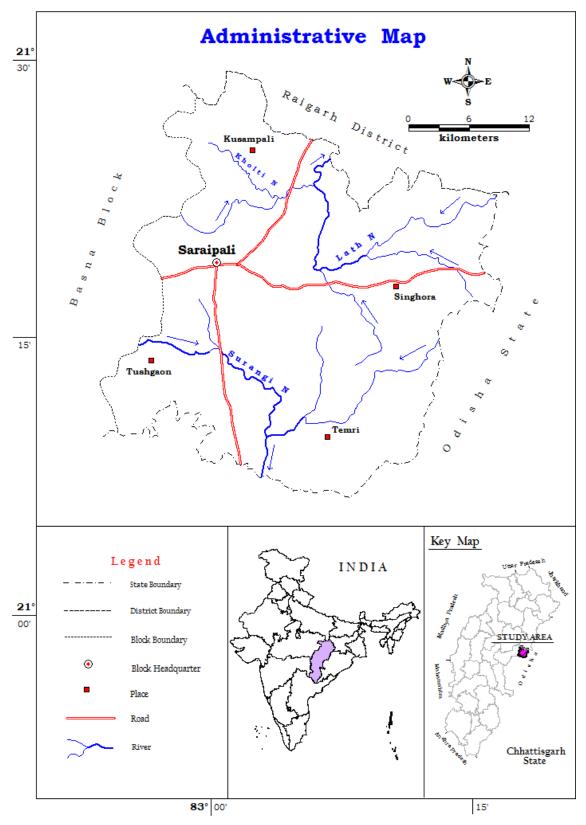


Figure: 1 Administrative Map of Saraipali Block

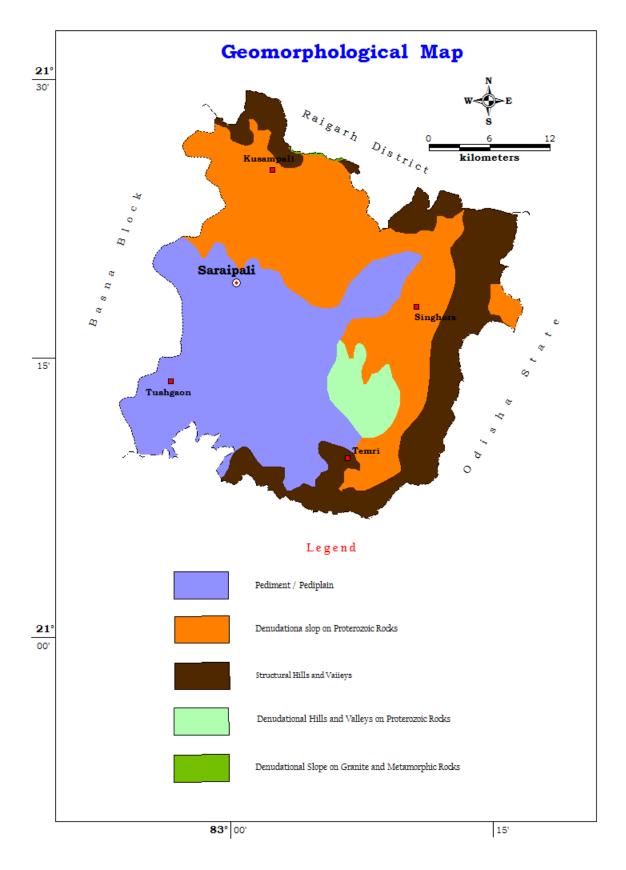


Figure 2: Geomorphology Map of Saraipali Block

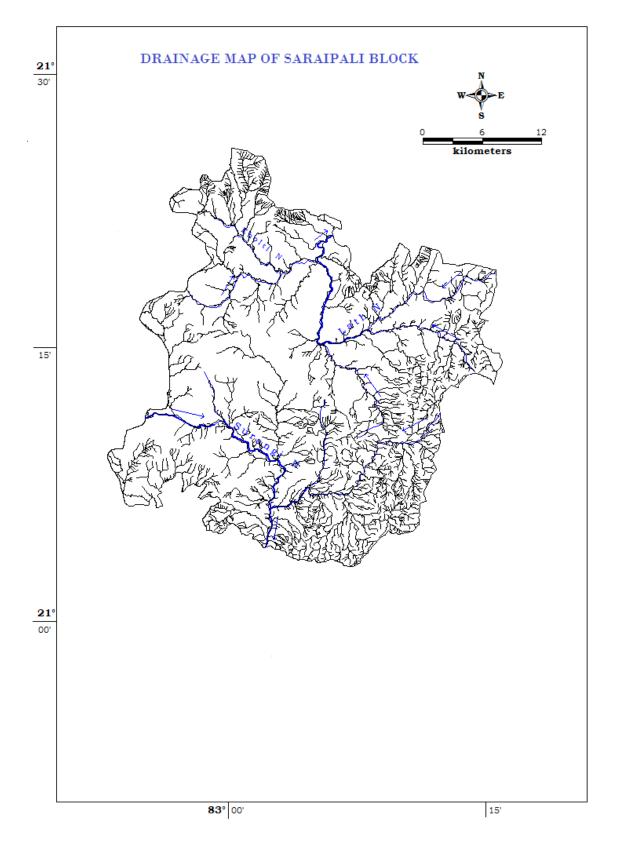


Figure 3: Drainage Map of Saraipali Block

<u>Agriculture and Irrigation</u>: Agriculture is practiced in the area during Kharifand Rabi season every year. During the Kharif, cultivation is done through rainfall while during the Rabi season, it is done through ground water as well as partly through surface water like canals and other sources. The groundwater abstraction structures are generally Dugwells, Borewells /tubewells. The principal crops in the block are Paddy, Wheat, pulsesand vegetables.

In some areas, double cropping is also practiced. The agricultural pattern, cropping pattern and area irrigated data of Saraipaliblock is given in Table 3 (A, B, C, D, E).

Block	Total geograph ical area	Revenue forest area	Area not available for cultivation	Net sown area	Double cropped area	Gross cropped area
Saraipali	87000	29697	8232	53015	5215	58230

Table 3 (A): Agricultural pattern (in ha)

Table 3 (B): Land use pattern (in ha)

Block	Total geographical area	Revenue forest area	Area not available for cultivation	Non-agricultural& Fallow land	Agricultural Fallow land	Net sown area	Double cropped area	Gross cropped area
Saraipali	87000	29697	8232	7556	1292	53015	5215	58230

Table 3 (C): Cropping pattern (in ha)

Block	Kharif	Rabi			Cereal		Pulses	Tilhan	Fruits	Resh	Mirch Masala	Sugar-
			Wheat	Rice	Jowar& Maize	Others			Vegetables			cane
Saraipali	53013	5217	600	51411	154	0	3800	2096	564	48	88	10

Table 3 (D): Area irrigated by various sources (in ha)

No. of canal	Irrigated	No. of bore	Irrigated	No. Of	Irrigated	No. of	Irrigated	Irrigated area	Net Irri-	Gross	% of irrigated
(private and	area	wells/ Tube	area	dug	area	Talabs	area	by other	gated area	irrigated	area wrt. Net
Govt.)		wells		wells				sources		area	sown area
21	2973	2810	8046	92	17	919	1892	4076	15522	17004	29 %

Table 3 (E): Statistics showing Agricultural land Irrigated

Block	Net Irrigated Area	Net Irrigated Area by ground water	Percentage of Area Irrigated by ground water
Saraipali	15522	8063	51.9

<u>Groundwater Resource Availability and Extraction</u>: Based on the resource assessment made, the resource availability in aquifer wise in Saraipali block upto 200 m depth is given in the table-4.

	Dongargarh granite and gneiss						
Dlaak	Phrea	ntic	Fractured	T- 4-1			
Block	Dynamic	Static	In- storage	Total resource			
Saraipali	1291.46	275.31	13.32	1580.09			

Table - 4: Ground Water Resources of Saraipali block in Ham

Block	Calcareous shale						
	Phrea	atic	Fractured	Total			
	Dynamic	Static	In- storage	Total resource			
Saraipali	5835.86	1244.07	60.1	7140.03			

	Sandstone						
Dlash	Phrea	atic	Fractured	Tatal			
Block	Dynamic	Static	In- storage	Total resource			
Saraipali	1310.88	279.45	13.52	1603.85			

Existing and Future Water Demand (2025): The existing demand for irrigation in the area is 2853.0 Ham while the same for domestic and industrial field is 432.62 Ham. To meet the future demand for ground water, a total quantity of 5585.21 ham of ground water is available for future use.

<u>Water Level Behaviour</u>: (i) Pre- monsoon water level: In the pre-monsoon period, it has been observed that the water level varies from 3.2 to 16.78 mbgl with an average of 7.75 mbglin phreatic aquifer. In fracturedformation, the pre monsoon water level variation range is 4.24 to 25.6 mbgl with average of 15.34 mbgl.

Block	Phreatic					
Name	Min	Max	Avg			
Saraipali	3.2	16.78	7.75			

Table 5A: Aquifer wise Depth to Water Level (Pre-monsoon)

Water Level (in mbgl)

Table 5B: Aquifer wise Depth to Water Level (Pre-monsoon)

Block	Fractured				
Name	Min	Max	Avg		
Saraipali	4.24	25.6	15.34		

(ii) Post- monsoon water level: In the post-monsoon period, it has been observed that the water level varies from 1.4 to 5.43 mbgl with an average of 3.42 mbglin phreatic aquifer. In fractured formation, the post monsoon water level variation range is 4.13 to 21.32 mbgl with average of 10.68 mbgl.

Table 5C: Aquifer wise Depth to Water Level (Post-monsoon)

Block	Phreatic				
Name	Min	Max	Avg		
Saraipali	1.4	5.43	3.42		

Water Level (in mbgl)

Table 5D: Aquifer wise Depth to Water Level (Post-monsoon)

Block	Fractured				
Name	Min	Max	Avg		
Saraipali	4.13	21.32	10.68		

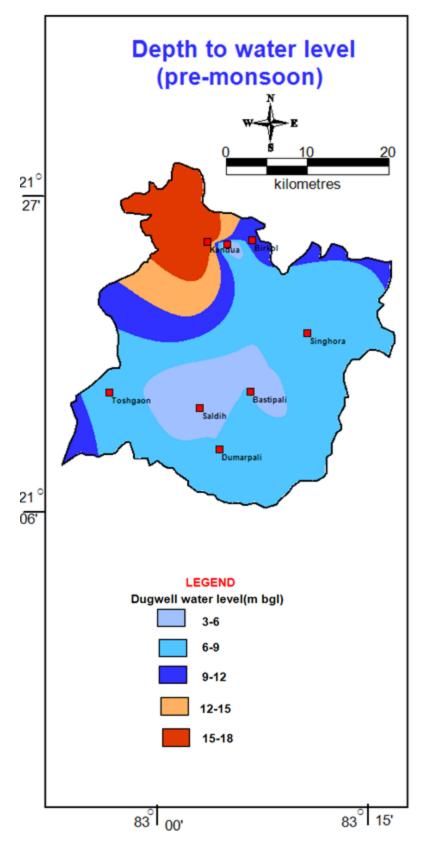


Figure-4: Depth to water level map Phreatic Aquifer (Pre-monsoon)

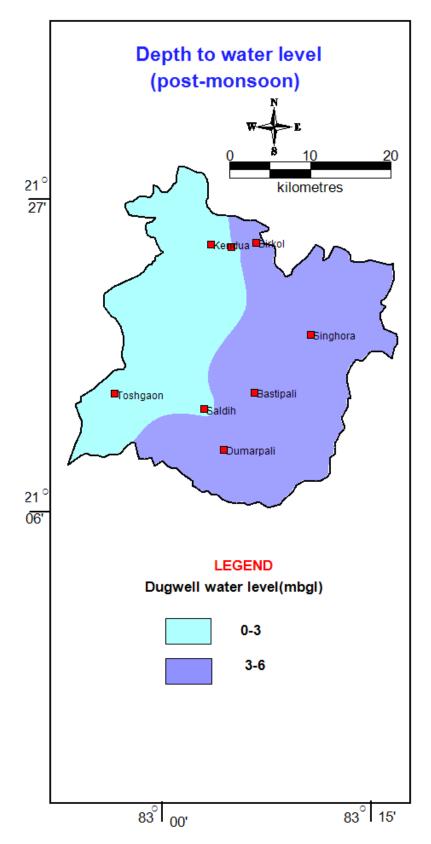


Figure 5: Depth to water level map Phreatic Aquifer (Post-monsoon)

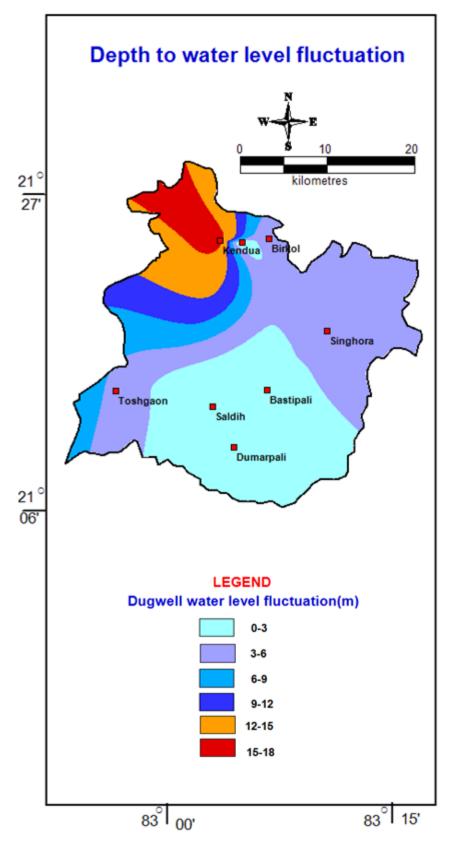


Figure 6: Depth to water level fluctuation map of Phreatic Aquifer

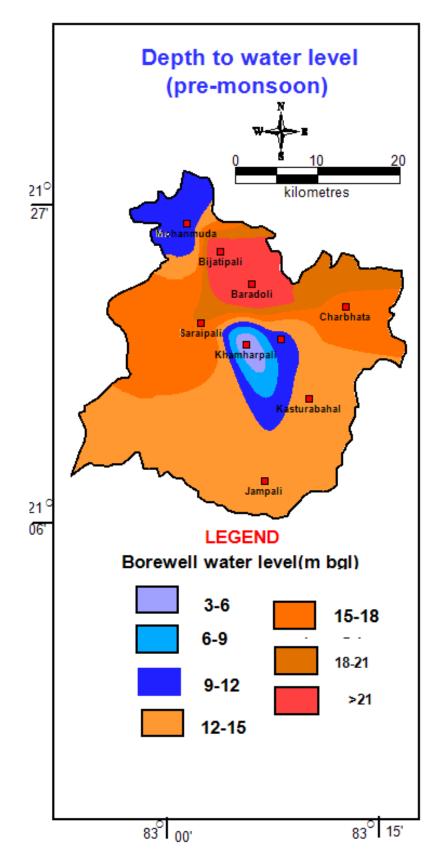


Figure-7: Depth to water level map Fractured Aquifer (Pre-monsoon)

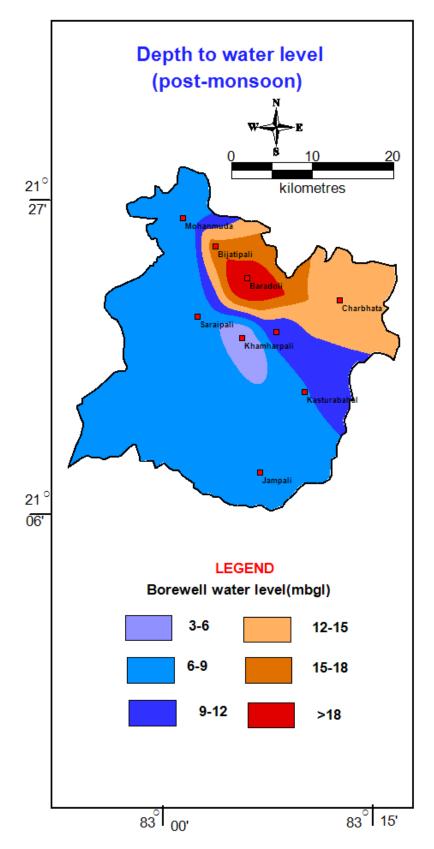


Figure-8: Depth to water level map Fractured Aquifer (Post-monsoon)

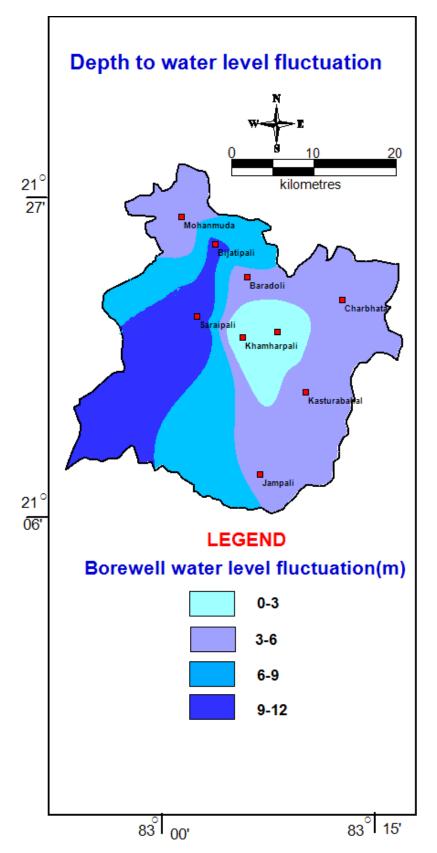


Figure 9: Depth to water level fluctuation map of Fractured Aquifer

(iii) Seasonal water level fluctuation: The water level fluctuation data indicates that in Saraipaliblock, water level fluctuationinphreaticaquifervaries from 0.44 to 15.38 m with an average fluctuation of 4.32 m. Water level fluctuationinfractured aquifervaries from 0.11 to 10.51 m with an average fluctuation of 4.66 m.

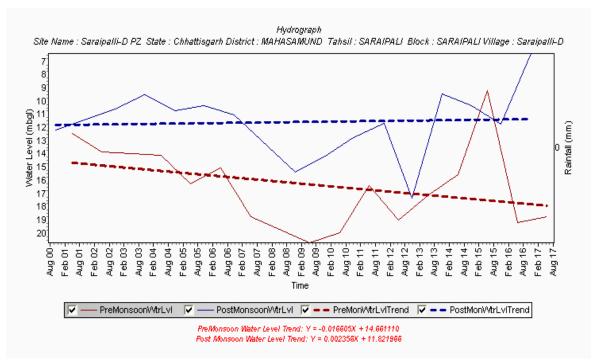

Block	Phreatic				
Name	Min	Max	Avg		
Saraipali	0.44	15.38	4.32		

Table 5E: Aquifer wise Depth to Water Level Fluctuation

Water Level (in m)

Block	Fractured			
Name	Min	Max	Avg	
Saraipali	0.11	10.51	4.66	

(iv) The long-term water level trend: During pre-monsoon period, there is decline in water

level (as indicated by dotted red trend line), about 2m over a 10-year period.

Figure 11: Hydrograph of Saraipali village, Saraipali block

2. Aquifer Disposition:

<u>Number of Aquifers</u>: There arethree major aquifers, viz. Singhora group (Calcareous shale), Singhora group (Sandstone) and Dongargarh granite and granitic gneiss, which in phreatic and fractured condition serve as major aquifer system in the block.

3-D aquifer disposition and basic characteristics of each aquifer:

<u>Geology:</u> Geologically the block exhibits lithology of Meso to Neo Proterozoic agedominated by Singhora group (Calcareous shale) and Singhora group (Sandstone).

- (i) Singhora group Singhora group is the oldest formation of Chhattisgarh super group. The sediments occurring in the block consist of Shale, Limestone, sandstone and siltstone. The ground water in this group of rocks occurs under phreatic/water table conditions in the weathered portion while semi-confined to confined conditions in deeper part consist of fractures. The average thickness of the weathered portion in the area is around 9.0 m. Generally, 1 to 2 sets of fractures are encountered within 60 m depth and 1 to 2sets of fractures are encountered within 60 to 200 m depth. The discharge is negligible(<1lps). At two places, namely Chhattigirola and Birkol, discharge of 4.0 lps and 5.50 lps were obtained respectively. The development in these formations is mostly by way of dug wells.
- (ii) Dongargarh granite gneiss- Archean to Proterozoic age . The ground water in this group of rocks occurs under phreatic/water table conditions in the weathered portion while semi-confined to confined conditions in deeper part consist of fractures. The average thickness of the weathered portion in the area is around 10.30 m. The occurrences of fractures at depth in the area are not common and whenever occur are less potential in ground water point of view. Generally, 1 to 2 sets of fractures are encountered within 60 m depth and 2 to 3 sets of fractures are encountered within 60 to 200 m depth. The potential zones are present in less than 50 m depth below ground level. In general, the discharge varies from negligible to 3 lps with an average yield of 1.5 lps. The development in these formations is mostly by way of dug wells and shallow tubewells. The thickness of fractured aquifer is around 0.2 m.

Table 6: Distribution of Principal aquifer systems in Saraipali

Block	Phreatic and fractured	Phreaticand	Phreaticand	
	calcareous shale	fractured	fractured granite	
	(sq.km.)	sandstone(sq.km.)	gneiss (sq.km.)	
Saraipali	601	135	133	

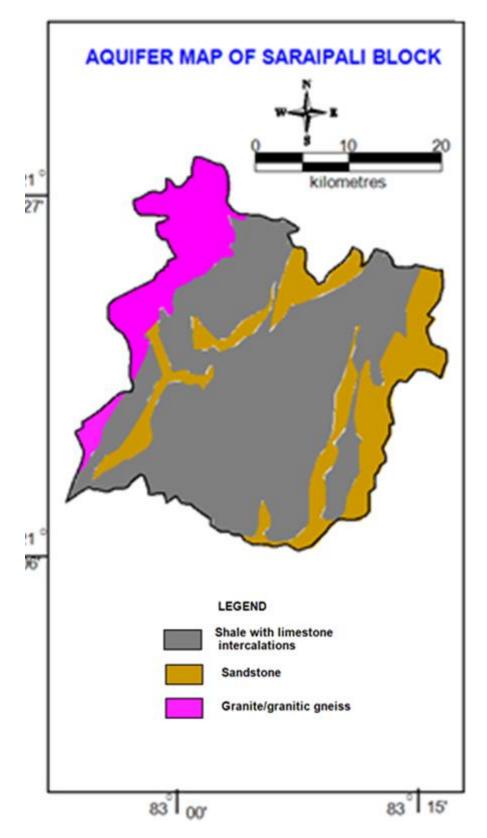
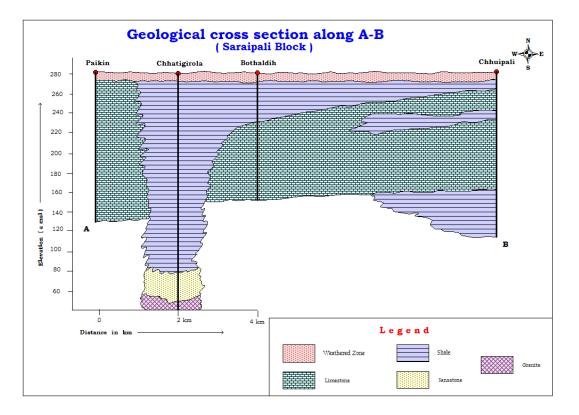



Figure 12: Aquifer map of Saraipali block

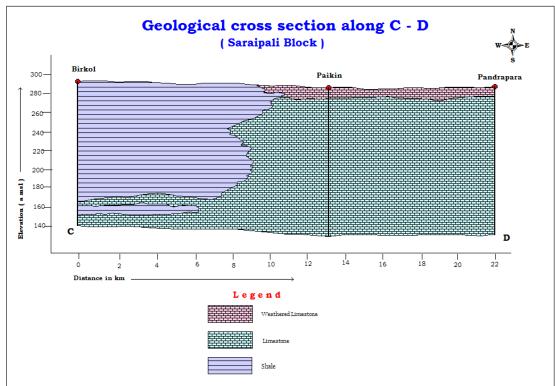


Figure-13: (a)Hydrogeological Cross Section(A-B),(b) Hydrogeological Cross Section(C-D),Saraipali Block

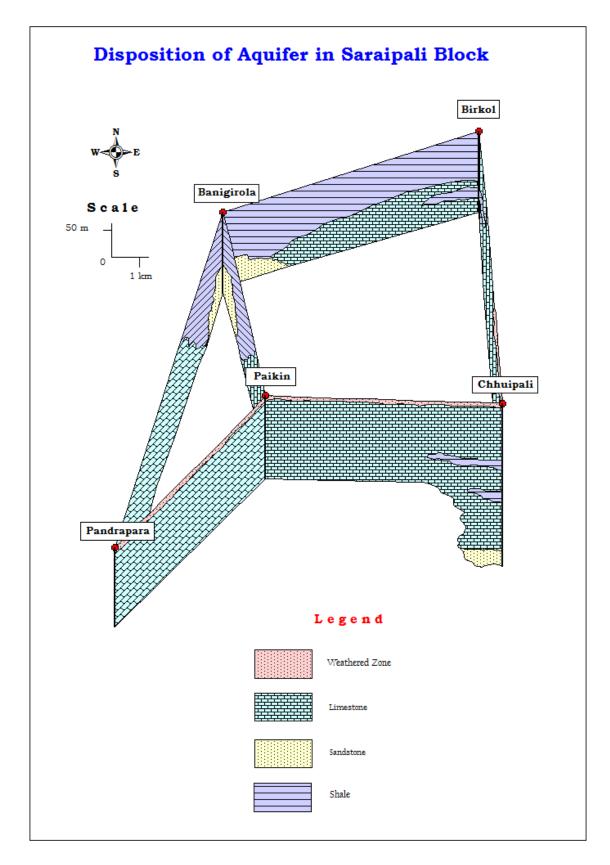


Figure-14: Disposition of aquifer in Saraipali block

3. Ground water Resource, extraction, contamination and other issues:

Aquifer wise resource availability is given in the table -4 where the total resource available in Saraipali block is 8438. 21ham. The extraction details and the future scenario (2025) along with the categorisation is depicted in the table-7 & 8.

District	Assessm	Net	Existing Gross	Existing Gross	Existing	Allocation For	Net Ground			
	ent Unit /	Ground	Ground Water	Ground Water	Gross	Domestic &	Water			
	Block	Water	Draft for	Draft for	Ground	Industrial	Availability for			
		Availabili	Irrigation in	Domestic &	Water Draft	Water Supply	Future			
		ty in Ham	Ham	Industrial Water	for All Uses	in Ham	Irrigation			
				Supply in Ham	in Ham	(2025)	Development			
							in Ham (2025)			
Mahasa mund	Saraipali	8438.21	2853.0	432.62	3285.62	467.55	5117.66			

Table-7: Ground water Resources of Saraipaliblock

Table-8: Categorization of Assessment Unit

District	Block	Stage of Ground water	Categorisation
		development (%)	
Mahasamund	Saraipali	38.94	Safe

<u>Categorisation</u>: TheSaraipali block falls in safe category. The stage of Ground water development is 38.94%. The Net Ground water availability is 8438.21 ham. The Ground water draft for all uses is 3285.62 Ham. The Ground water resources for future uses for Saraipali Block are5585.21Ham.

<u>Chemical Quality of Ground water and Contamination</u>: Throughout the study area, the water quality (phreatic and semi-confined aquifer) is good and all the parameters are within permissible limit. In conclusion it may be said that the groundwater in the block is suitable for drinking as well as for irrigation purposes.

4. Ground Water Resource enhancement:

Aquifer wise space available for recharge and proposed interventions:

Table -9: Summarised detail of Volume of porous space available for recharge (Aquifer wise)

Formation	Area (sq.m)	Available thickness of unsaturated zone (m)	Sp. Yield for the formation	Volume of unsaturated space available for recharge (m ³)	
Limestone/Shale	238*10 ⁶	1.5	0.03	10.71 x 10 ⁶	
Sandstone	80*10 ⁶	1.5	0.03	3.6 x 10 ⁶	

5. Issues:

- (i) The aquifer itself is a low yielding one due to which during summer, dugwells in almost all villages are dry except a few locations. Several handpumps also stop yielding water.
- (ii) It has been observed during fieldwork in pre-monsoon period, there is colossal wastage of groundwater through public water supply system.
- (iii) Poor stage of groundwater development.

6. Supply side interventions:

- Saraipali block experienced drought situation in 2017because of poor monsoon. Sanctuary wells may be constructed for drinking needs as a step towards crisis management.
- (ii) It has been observed during fieldwork in pre-monsoon period, there is colossal wastage of groundwater through public water supply system. In this state, the Government has undertaken "Nal Jal Yojana" to provide water to villages. Under this scheme, the government has dug borewells of about 150-200feet depth, lowered a pump in the well to draw out water and constructed a small tank to hold water. Unfortunately, people do not switch off the pump once the tank is full. Also, the pipes are not fitted with taps to control the flow of water. So, Information, education and Communication (IEC) activities to be organized to sensitize people on the issues of depleting groundwater resource. Massive awareness campaigns are essential to understand people about the importance community participation in saving water.
- (iii) Desiltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater.
- (iv) It has been observed that though the long-term trend lines are declining in premonsoon, so we have to go for artificial recharge on a long-term sustainability basis. Artificial Recharge structures may be constructed at suitable locations especially in the areas where the water level remains more than 3m in the post-monsoon period in this block to arrest the huge non-committed run-off and augment the ground water storage in the area. The different types of artificial structures feasible in the block are described in table-10.

Name of Block	Area Feasible for	Volume of Sub Surface	ume of Sub Surface Types of Structures Feasible and their Numb				
	recharge (sq.km)	Potential to be recharged through other methods (MCM)	Р	NB & CD	RS	G	
Saraipali	318	14.31	40	150	280	380	
	Recha	8.3	1.5	2.8	1.9		
	Estimate		Rs. 16.88	crore			

Table-10: Types of ArtificialRecharge structures feasible

(v) The practice of providing free electricity to operate irrigation borewells should be strictly monitored and put to an end in case of overconsumption. After a simple

calculation it has been found that Rs 16000/ hectare is the expenses of electricity (@Rs. 2.5/unit) for paddy field. So, monitoring mechanism for electricity consumption should be strengthened for farmers taking summer rice. Even if farmers use solar pump or other method of ground water irrigation for summer paddy, it should not be flooding method. Proper pipes are to be used to transfer water from one plot to another.

- (vi) Govt. may set up network of grids to purchase electricity generated from solar panels. This will encourage the farmers not to waste electricity by extracting groundwater unnecessarily and also provide alternative income.
- (vii) Since the stage of development in the block is 38.94 %. So, there is scope of development. In order to achieve 60% stage of ground water withdrawal in the block, development may be taken up as per the following table:

Table-11: Number of structures recommended in block for 60 % stage of development

Block	Net	Stage of	Presen	Groundwat	Surplus	No. of TW	No. of DW
	groundwat	GW	t GW	er draft at	groundwat	recommernded	recommended in
	er	developme	draft	60% stage	er at	in each block	block (assuming
	availabilit	nt (%)	(ham)	of	present	(assuming unit	unit draft as
	y (ham)			developme	stage of	draft as 2	0.72ham/structure/y
				nt (ham)	developme	ham/structure/ye	ear)
					nt (ham)	ar)	
Saraipa	8438.21	38.4	3285.7	5062.93	1777.31	889	2468
li			2				

7. Demand side interventions:

(i) To arrest the declining groundwater levels during pre-monsoon period, change in cropping pattern & irrigation pattern is suggested for Rabi season, as per the following table:

Table 12: Detail of groundwater saved through change in cropping pattern

Block	Paddy	Water required		Difference	Total	Existing	Available	Improved
	cultivation area	for cultivation		(m) per ha	saving	gross	resource	status in
	during Rabi	(in m)	per ha		of	groundwater	(ham)	Stage of
	season (ha)	Paddy	Maize		water	draft for all		groundwater
					(ham)	uses in ham		development
Saraipali	4992	0.9	0.5	0.4	1996.8	3285.62	8438.21	15.27
_								

In command or non-command area wherever ground water has been used for field irrigation of pulses and vegetables should be replaced with micro irrigation methods such as sprinklers, drip irrigation etc. which may save 30 to 40% ground water.

block	irrigated crop area under rabi 2016(ha)	water required for ultivation of pulses(m)	30 % groundwater saved through microrrigation	water saved through microirrigation (ham)
Saraipali	5217	0.3	0.3	181.8

Table 13: Detail of groundwater saved through change in irrigation pattern

Table 14: Proposed sites for artificial recharge of groundwater in Saraipali block

PT	NB & CD	RS	GB
(Percolation Tank)	(Nala bund & Check dam)	(Recharge Shaft)	(Gabbion structure)
Bhuthiya	Kanpal	Paterapali	Kena
Balouda	Jangalbeda	Bhothaldih	Kurludhudha (Kurluda
Bhothaldih	Kisdi	Kurludhudha (Kurluda	Bastipali
Temri	Palidih	Dewanpali	Sukda
Manpali	Palsapali	Antarjhala	Bajibahal
Sargunabhata	Jampali	Kokdi	Pudagarh
Daugudi	Jamadalkha	Amaldih	Belmundi
Nawagarh	Bajibahal	Gaurbahali	Pujaripali
Batki	Samdaraha	Dongarrakasa	Pelagarh
Dongaripali	Kasturabahal	Dongarrakasa	Debrigarh
Charbhatha	Palsapali	Birkol	Chiwarakuta
	Majarmati	Saraipali (Bhagta)(Sa	Banjhapali
	Paraskol	Raksha	
	Kalenda (Kelenda)	Sagarpali	
	Chhindpali	Dewangudi	
	Bormal	Banjhapali	
	Singbahal	Murmuri	
	Ghatkachhar		

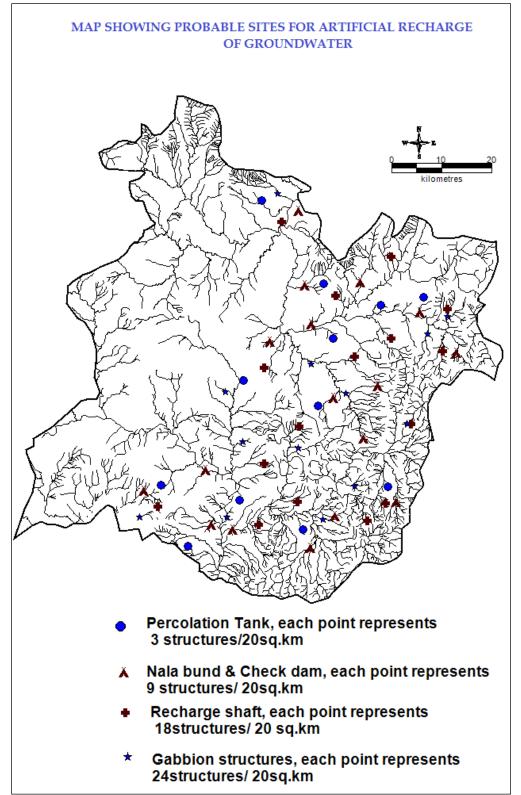


Figure 15: Map of proposed sites for artificial recharge of groundwater in Saraipali block

7. CONCLUSIONS:

An area of 870 sq.km of Saraipali block of Mahasamund district has been considered for Aquifer Mapping and Management Plans. The total g.w resource is 8438.21 Ham with stage of g.w development 38.94 % and categorized as "safe". 51.9 % of the irrigated area is uses groundwater for irrigation. The major aquifer groupsareSinghora Group calcareous shale, limestone and Dongargarh Granite and Granite gneiss, in terms of Demand side management, by change in cropping and irrigation pattern (micro irrigation methods) 1996.8Ham and 181 Ham water can be saved respectively. In terms of Supply side management, by constructing artificial recharge structure 14.31 MCM water can be recharged and constructing of tubewell at suitable locations, drinking water needs may be fulfilled.